• +202 44 44 64 71

المجلة العلمية

201520
0

0

EVALUATION OF THE EFFECT OF FOUR ESSENTIAL OILS AS POTENTIAL ALTERNATIVES FOR MONENSIN ON RUMEN FERMENTATION CHARACTERISTICS AND NUTRIENT DEGRADABILITY

Eman A. Elwakeel1, A.A. Al-Sagheer2 and Mariam G. Ahmed1

1Department of Animal and Fish Production, Faculty of Agriculture, El-Shatby, Alexandria University, Egypt.

2Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.

Abstract :

The objective of this study was to evaluate the effect of four essential oils (EOs) from guava (Psidium guajava), citronella (Cymbopogon nardus), lemongrass (Cymbopogon citratus), and geranium (Pelargonium graveolens) on gas production and rumen fermentation in vitro as a natural substitute for the ionophore antibiotic monensin. These EOs are chemically characterised by Gas Chromatography Mass and evaluated in vitro at four different concentrations (0, 15, 30, and 45 µl per 45 ml buffered rumen fluid) regarding their effects on gas production and rumen fermentation characteristics and were compared to those of monensin. Compared to the negative control, monensin significantly depressed gas production and truly degraded dry matter (TDDM) but enhanced propionate production. All EOs except P. graveolens significantly decreased gas production with increasing concentrations. TDDM was significantly reduced with C. citratus (at 45 µl) and P. graveolens (at 30 and 45 µl). No significant change was detected in the ammonia nitrogen concentration with all assayed EOs except C. nardus and C. Citrus. Compared to monensin and the negative control, C. nardus and C. Citrus reduced the ammonia concentration at high levels. High levels of all tested EOs significantly reduced protozoa counts.The EOs of C. citratus (at 45 µl) and P. graveolens (at 30 and 45 µl) also significantly increased the acetate proportion. Moreover, the acetate to propionate ratio was significantly increasedby30 µl P. graveolens. The results of the current study concluded that the tested EOs, except P. graveolens, efficiently diminished gas production with a similar potency to monensin. Furthermore, they exceed the monensin in their ability to reduce the ammonia nitrogen concentration and protozoa count without adversely affecting volatile fatty acid levels. But, they were less effective than monensin in modifying ruminal volatile fatty acid profile especially propionate and acetate to propionate ratio. Hence, P. guajava, C. nardus, and C. citratus EOs could be a safe and promising rumen manipulator.

المراجع :

Anassori, E., B. Dalir-Naghadeh, R. Pirmohammadi, A. Taghizadeh, S. Asri-Rezaei, M. Maham, S. Farahmand-Azar, and P. Farhoomand (2011). Garlic: A potential alternative for monensin as a rumen modifier. Livest. Sci., 142(1-3):276-287.

AOAC (2006). Official Methods of Analysis, 18th ed., Washington, DC, USA.   

Blümmel, M., and K. Becker (1997). The degradability characteristics of fifty-four roughages and roughage neutral-detergent fibres as described by in vitro gas production and their relationship to voluntary feed intake. Br. J. Nutr., 77(5):757-768.

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol., 94(3):223-253.

Busquet, M., S. Calsamiglia, A. Ferret, and C. Kamel (2006). Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci., 89(2):761-771.

Callaway, T. R., A. M. C. De Melo, and J. B. Russell (1997). The effect of nisin and monensin on ruminal fermentations in vitro. Curr. Microbiol., 35(2):90-96.

Calsamiglia, S., M. Busquet, P. Cardozo, L. Castillejos, and A. Ferret (2007). Invited review: essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci., 90(6):2580-2595.

Canaes, T. S., F. Zanferari, B. L. Maganhe, C. S. Takiya, T. H. Silva, T. A. Del Valle, and F. P. Rennó (2017). Increasing dietary levels of citral oil on nutrient total tract digestibility, ruminal fermentation, and milk composition in Saanen goats. Anim. Feed Sci. Technol., 229:47-56.

Castillejos, L., S. Calsamiglia, and A. Ferret (2006). Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J. Dairy Sci., 89(7):2649-2658.

Castillejos, L., S. Calsamiglia, J. Martin-Tereso, and H. Ter Wijlen (2008). In vitro evaluation of effects of ten essential oils at three doses on ruminal fermentation of high concentrate feedlot-type diets. Anim. Feed Sci. Technol., 145(1-4):259-270.

Chesson, A. (2006). Phasing out antibiotic feed additives in the EU: worldwide relevance for animal food production. Antimicrobial growth promoters–where do we go from here:69-81.

Dorman, H., and S. G. Deans (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol., 88(2):308-316.

Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc., 50(272): 1096-1121.‏

Duffield, T., A. Rabiee, and I. Lean (2008). A meta-analysis of the impact of monensin in lactating dairy cattle. Part 1. Metabolic effects. J. Dairy Sci., 91(4):1334-1346.

Francis, G., Z. Kerem, H. P. Makkar, and K. Becker (2002). The biological action of saponins in animal systems: a review. Br. J. Nutr., 88(6):587-605.

Galyean, M. (1989). Laboratory procedure in animal nutrition research. Department of Animal and Life Science. New Mexico State University, USA:188.

Gunal, M., A. Ishlak, and A. Abughazaleh (2013). Evaluating the effects of six essential oils on fermentation and biohydrogenation in in vitro rumen batch cultures. Czech J. Anim. Sci., 58:243-252.

Jeyanathan, J., C. Martin, and D. Morgavi (2014). The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal 8(2):250-261.

Johnson, M., A. Devine, J. Ellis, A. Grunden, and V. Fellner (2009). Effects of antibiotics and oil on microbial profiles and fermentation in mixed cultures of ruminal microorganisms. J. Dairy Sci., 92(9):4467-4480.

Kamalak, A., A. Atalay, C. Ozkan, A. Tatliyer, and E. Kaya (2011). Effect of essential orange (Citrus sinensis L.) oil on rumen microbial fermentation using in vitro gas production technique. J. Anim. Plant Sci., 21(4):764-769.

Khorrami, B., A. Vakili, M. D. Mesgaran, and F. Klevenhusen (2015). Thyme and cinnamon essential oils: Potential alternatives for monensin as a rumen modifier in beef production systems. Anim. Feed Sci. Technol., 200:8-16.

Kouazounde, J. B., L. Jin, F. M. Assogba, M. A. Ayedoun, Y. Wang, K. A. Beauchemin, T. A. McAllister, and J. D. Gbenou (2015). Effects of essential oils from medicinal plants acclimated to Benin on in vitro ruminal fermentation of Andropogon gayanus grass. J. Sci. Food Agric., 95(5):1031-1038.

Lin, B., J. Wang, Y. Lu, Q. Liang, and J. Liu (2013). In vitro rumen fermentation and methane production are influenced by active components of essential oils combined with fumarate. J. Anim. Physiol. Anim. Nutr., 97(1):1-9.

Mauricio, R. M., F. L. Mould, M. S. Dhanoa, E. Owen, K. S. Channa, and M. K. Theodorou (1999). A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim. Feed Sci. Technol., 79(4):321-330.

McEwan, N., R. Graham, R. Wallace, R. Losa, P. Williams, and C. Newbold (2002). Effect of essential oils on ammonia production by rumen microbes. Reprod. Nutr. Dev., 42(1):S65-S65.

Melchior, E., K. Hales, A. Lindholm-Perry, H. Freetly, J. Wells, C. Hemphill, T. Wickersham, J. Sawyer, and P. Myer (2018). The effects of feeding monensin on rumen microbial communities and methanogenesis in bred heifers fed in a drylot. Livest. Sci., 212:131-136.

Narvaez, N., Y. Wang, Z. Xu, and T. McAllister (2013). Effects of California chaparral plants on in vitro ruminal fermentation of forage and concentrate diet. J. Sci. Food Agric., 93(3):550-559.

Newbold, C., F. McIntosh, P. Williams, R. Losa, and R. Wallace (2004). Effects of a specific blend of essential oil compounds on rumen fermentation. Animal feed science and technology 114(1-4):105-112.

Newbold, C. J., R. J. Wallace, and N. D. Walker-Bax (2013). Potentiation by metal ions of the efficacy of the ionophores, monensin and tetronasin, towards four species of ruminal bacteria. FEMS Microbiol. Lett., 338(2):161-167.

Palmquist, D., and H. Conrad (1971). Origin of plasma fatty acids in lactating cows fed high grain or high fat diets. J. Dairy Sci., 54(7):1025-1033.

Patra, A. K., and Z. Yu (2012). Effects of essential oils on methane production, fermentation, abundance and diversity of rumen microbial populations. Appl. Environ. Microbiol., AEM. 00309-00312.

Pirondini, M., S. Colombini, L. Malagutti, L. Rapetti, G. Galassi, R. Zanchi, and G. M. Crovetto (2015). Effects of a selection of additives on in vitro ruminal methanogenesis and in situ and in vivo NDF digestibility. Anim. Sci. J., 86(1):59-68.

Preston, T. (1995). Tropical animal feeding: a manual for research workers. Rome: FAO. p. 191–264. 

Russell, J., and H. Strobel (1988). Effects of additives on in vitro ruminal fermentation: a comparison of monensin and bacitracin, another gram-positive antibiotic. Journal of animal science 66(2):552-558.

Sallam, S., and A. Abdalla (2011). Antimethanogenic and antiprotozoal effect of some essential oils in vitro. Egy. J. Anim. Prod 48:203-215.

Sallam, S. M., S. A. Abdelgaleil, I. C. da Silva Bueno, M. E. Nasser, R. C. Araujo, and A. L. Abdalla (2011). Effect of some essential oils on in vitro methane emission. Arch. Anim. Nutr., 65(3):203-214.

Schären, M., C. Drong, K. Kiri, S. Riede, M. Gardener, U. Meyer, J. Hummel, T. Urich, G. Breves, and S. Dänicke (2017). Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows. J. Dairy Sci., 100(4):2765-2783.

Shen, J., Z. Liu, Z. Yu, and W. Zhu (2017). Monensin and nisin affect rumen fermentation and microbiota differently in vitro. Front. Microbiol. 8:1111.

Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol., 48(3-4):185-197.

Ushida, K., and J. Jouany (1996). Methane production associated with rumen‐ciliated protozoa and its effect on protozoan activity. Lett. Appl. Microbiol., 23(2):129-132.

van Nevel, C., and D. Demeyer (1988). Manipulation of rumen fermentation. In: Hobson PN, editor. The rumen microbial ecosystem. Elsevier Applied Science: London.387-443.

Van Soest, P. (1994). Nutritional ecology of the ruminant., 2nd edn.(Cornell University Press: Ithaca, NY). Google Scholar

Van Soest, P. v., J. Robertson, and B. Lewis (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74(10):3583-3597.

Wan, J., A. Wilcock, and M. Coventry (1998). The effect of essential oils of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens. J. Appl. Microbiol., 84(2):152-158.

Yang, W., B. Ametaj, C. Benchaar, M. He, and K. Beauchemin (2010). Cinnamaldehyde in feedlot cattle diets: intake, growth performance, carcass characteristics, and blood metabolites. J. Anim. Sci., 88(3):1082-1092.

Ye, D., S. K. R. Karnati, B. Wagner, J. L. Firkins, M. L. Eastridge, and J. M. Aldrich (2018). Essential oil and monensin affect ruminal fermentation and the protozoal population in continuous culture. J. Dairy Sci., 101(6):5069-5081.

Research :