Azza M.M. Badr
Regional Center for Feed and Food, Agriculture Research Center, Giza, Egypt.
The use of multiple-enzymatic in vitro methods has been proven to be a good alternative to chemical analyses to simulate the digestive processes and to predict energy values with a greater precision in rabbits. The basal experimental diet was formulated and pelleted to cover the nutrient requirements of rabbits according to NRC (1977). The experimental groups were classified as the following: R1 fed the basal diet and served as control group (R1), and control containing 2%, or 4% or 6% caraway seeds sieving (CSS) for R2, R3 and R4, respectively. The prediction equations of the DMD %, GEd% and DE (MJ Kg-1 DM) of diets using in vitro analysis, the highly significant (P<0.01) prediction effect of DMD was recordedwith R3 (containing 4% CSS), the values were 76.60% in R3, followed 75.04% in R4 and the lowest value 73.89% in R2 compared with control 72.07%. Predicting nutritional values by analyzing the laboratory in vitro with the chemistry analysis (g / kg) of the dry matter, the higher significant (P<0.01) prediction of DMD% was recordedwith R3, the values were 82.04% in R3, 80.37% in R4 and 79.14% in R2 compared with control 75.62%, the estimating GEd%, and. DE (MJ Kg-1DM) increased the prediction ratio for GEd% and DE (MJ / kg DM) using DMDinv and EE with R3, and the values were 82.81% and 14.07(MJ/kg DM) respectively. These values were higher than these predicted by in vitro only DMD in vivo trailswere slightly higher values compared with DMD in vitro by 0.54%,0.38, 6.65 and 4.21% for R1, R2, R3 and R4, respectively. The prediction DMSin vivo from equation in vitro systemhigher compared with the values DMDinv and values DMDin vivo trails, the values were 79.16%, 81.54 %,80.17% and 76.28%, for R2, R3 and R4, respectively. Values of nitrogen-corrected apparent metabolizable energy content (AMEn) and its proportion on total gross energy (AMEn/GE%) in the diets CSS were highest values determined by chemical composition results compared with the same values obtained by using in vitro dry matter digestibility results. The highest significant values of AMEn/GE% and AMEn (kcal kg–1 DM) were obtained with R3 they were 76.20 and 3,460 kcal kg–1 DM, respectively. The values highest increased AMEn/GE% determined by using in vitro dry matter digestibility result was recorded with R3 by 9.48%, followed R4 by 6.66%, finally R 2 by 4.97%, the values of AMEn (kcal kg–1 DM) were 2,903, 2,852 and 2,820, for R3, R4 and R2 compared with R1 control was 2,726. The Prediction apparent ileal digestibility of protein values of In-vitro was given the highest value compared to the digested protein by the digestion experience on rabbits. Results of endogenous protein losses (EPLg / kg DM intake) were lower with diets containing caraway seed sieving compared to the control diet. The values were 29.43, 27.60, 28.65% and R2, R3 and R4, respectively compared to the control 31.64%. Predicting the values of essential and non-essential amino acids by the results of the digested protein obtained from the in vitro enzyme system. Significant increase was recorded with rabbits’ diets containing caraway seed sieve by levels 2 and 4% for R2 and R3, respectively, but a nonsignificant increase recorded with the R4 which contains 6% compared with the control R1. Caraway seed saving containing medicines compounds of total antioxidant 319.77 mg/100g ascorbic acid equivalent, total flavonoids 120.56 m/100g Quercetin equivalent, total phenols 447 mg/100g gallic acid equivalent and carvacrol 3934 g/L. In conclusion, a study of diets containing 4% caraway seeds sieving (CSS) indicated the highest nutritional values. The nutritional values can be predicted through estimation of in vitro dry matter enzymatic digestibility in rabbit diets.
Acimovic, M.; Oljaca, S.; V. Tesevic; M. Todo-sijevic; J. Djisalov (2014a). Evaluation of caraway essential oil from different production areas of Serbia. Horticultural Science (Prague),41, 122-130.
Adedokun, S. A.; O. Adeola; C.M. Parsons; M.S. Lilburn and T.J. Applegate (2008b). Standardized ileal amino acid digestibility of plant feedstuffs in broiler chickens and turkey poults using a nitrogen-free or casein diet. Poult. Sci. 87, 2535–2548.
AOAC (2005). Official Methods of Analysis, 18th ed. Association of Official Analytical Chemists, Washington, DC, USA.
Arvouet-Grand, A.; B.Vennat; A. pourrat and P. Legret (1994).Standardisation d un extra it de propoliset identification des principauxconstituants. Journal de pharmacie de Beligique 49,462-468.
Battaglini M.; and A. Grandi (1986). Stima del valore nutritivo dei mangimi composti per conigli. Riv. di Coniglicoltura, 23 (4), 51-53.
Baytop T. (1984). Phyto therapy in Turkey (Past and Present). Istanbul University publications No. 3255, Istanbul Nobel Publications, Istanbul, Turkey, pp.194–195 (in Turkish).
Benkaci-Ali F.; R. Me´kaoui; G. Scholl; G. Eppe (2014). World Acad. Sci. Eng. Technol. 8, 553–557.
Boisen S. and J.A. Fernández (1997). Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Anim. Feed Sci. Technol. 68, 277-286.
Boisen S, J.A. Fernández (1995). Prediction of the apparent ileal digestibility of protein and amino acids in feedstuffs and feed mixtures for pigs by in vitro analyses. Anim. Feed Sci. Technol.; 51:29–43. doi: 10.1016 /0377-8401(94)00686-4. [CrossRef] [Google Scholar].
Boisen S. (1991). A model for feed evaluation based on in vitro digestible dry matter and protein. In: Fuller M.F. (ed.) In vitro digestion for pigs and poultry. C.A.B. Int., Wallingford, U.K. pp. 135-145.
Bourdillon A.; B. Carré; L. Conan; J. Duperray; G. Huyghebaert; B. Leclercq; M. Lessire; J. Mcnab and J. Wiseman (1990). European reference method for the in vivo determination of metabolizable energy with adult cockerels: reproducibility, effect of food intake and comparison with individual laboratory methods. Brit Poult. Sci., 31, 557-565.
Blaxter, K.L. (1968). The energy metabolism of ruminants. 2nd ed. Charles Thomas Publisher. Spring field. Illinois, U.S.A.
Carabaño R.; N. Nicodemus; J. García; G. Xiccato; A. Trocino; J.J. Pascual; L. Falcao-e-cunha and L. Maertens (2008). In vitro analysis, an accurate tool to estimate dry matter digestibility in rabbits. Intra and inter-laboratory variability. World Rabbit Sci 16, 195-203.
De Blas J.C.; J.M. Rodriquez; G. Santoma and M.J. Fraga (1984). The nutritive value of feeds for growing rabbits. J. App. Rabbit Res. 7, 72-74.
De Blas J.C.; Wiseman N. J.; M.J. Fraga and M. J. Villamide (1992). Prediction of the digestible energy and digestibility of gross energy of feeds for rabbits. 2. Mixed diets. Anim. Feed Sci. Tech. 39, 39-52.
Calsamiglia, S.; M.D. Stem and J.L. Frinkins (1995). Effects of protein source on nitrogen metabolism in continuous culture and intestinal digestion in vitro. Journal of Animal Science, 73: 1819.
Cone J. W. and A. F. B. van der Poel (1993). Prediction of apparent ileal digestibility in pigs with a two- step in -vitro methods. J. Sci. food Agric., 62:393-400.
Crampton C.F.; W.H. Stein; S.Moore (1957). Comparative studies on chromatographically purified histones. J Biol Chem. Mar;225(1):363–386. [PubMed] [Google Scholar];
Carpenter K.J. and K.M. Clegg (1956). The metabolizable energy of poultry feeding stuffs in relation to their chemical composition. J. Sci. Food Agric., 7, 45-51.
Corino C. (1987). Alcune considerazioni sulla stima del valore nutritivo dei mangimi composti integrati utilizzati nell’alimentazione del coniglio. Riv. Di Coniglicoltura, 24 (9): 41-44.
Christine A.; Butts John; A. Monro Paul; J. Moughan (2012). In vitro determination of dietary protein and amino acid digestibility for humans. British Journal of Nutrition, 108 (S2): S282-S287.
Cowieson, A.J. and V. Ravindran (2007). Effect of phytic acid and microbial phytase on the flow and amino acid composition of endogenous protein at the terminal ileum of growing broiler chickens. Br. J. Nutr., 98, 745–752.
Deepak, S. (2013). Importance of Cuminum cyminum L. and Carum carvi L. in traditional medicaments – a review. Indian Journal of Traditional Knowledge, 12, 300-307.
Dolz S. and C. De Blas (1992). Metabolizable energy of meat and bone meal from Spanish rendering plants as influenced by level of substitution and method of determination. Poult. Sci. 71, 316-322.
Duncan, D. B. (1955):Multiple ranges and multiple F test. Biometrics,11:1-42.
EEC (1986). Directive de la Commission du 9 avril 1986 fixant la méthode de calcul de la valeur énergétique des aliments composés destinés à la volaille. Journal Officiel des Communautés Européennes L, 130, 53-54.
El-Soud, A.; N. El-Lithy; G. El-Saeed; M. Wahby; M. Khalil; F. Morsy and N. Shaffie (2014). Reno protective effects of caraway (Carum carvi L.) essential oil in streptozotocin induced dia-betic rats. Journal of Applied Pharmaceutical Science, 4, 27-33.
Falcão-e-Cunha L.; L. Castro Solla; L. Maertens; M. Marounek; V. Pinheiro; J. Freire and J.L. Mourão (2007). Alternatives to antibiotic growth promoters in rabbit feeding: a review. World Rabbit Sci., 15: 127 - 140
Fekete, S. and T. Gippert )1986(. Digestibility and nutritive value of nineteen important feedstuffs for rabbits. J. Appl. Rabbit Res., 9: 103-108
Fernandez-Carmona J.; C. Cervera and E. Blas (1996). Prediction of the energy value of rabbit’s feeds varying widely in fiber content. Anim. Feed Sci. Tech., 64, 61-75.
Fernandez-Carmona J.; Cervera C. and Blas E. (1993). Un nuevo método in vitro para el estudio de la igestion en el conejo. Proc. XVIII Symposium de Cunicoltura, Granoller, Spain, 43-45.
FIsher, C. (1982). Energy values of compound poultry feeds. Occasional Publication No. 2. Institute for Grassland & Animal Production, Poultry Division, Roslin, Midlothian, UK.
Francesch M. (2001). Sistemas para la valoración energética de los alimentos en aves. Arch Latin Prod Anim. 9, 35-42. [In Spanish].
Furuya, S.; K. Sakamoto, and S. Takahashi (1979). A new in vitro method for the estimation of digestibility using the intestinal fluid of the pig. Br. J. Nutr., 41: 511-520.
Graham H.; W. Lowgren and P. Aman (1989). An in vitro method for studying digestion in the pig. 2. Comparison with the in vivo ileal and fecal digestibilies. Br. J. Nutri, 61:689-698.
Hassan, E.; and S. Abdel-Raheem (2013). Response of growing buffalo calves to dietary supplementation of caraway and garlic as natural additives. World Applied Sciences Journal, 22, 408-414.
Hodgkinson, S.M.; P.J. Moughan; G.W. Reynolds; K.A. James (2000). The effect of dietary peptide concentration on endogenous ileal amino acid loss in the growing pig. Br. J. Nutr., 83, 421–430.
Janssen, A.M.; Luijendijk, T.J.C.; Scheffer, J.J.C. and A.B. Sven (1988). Antibacterial and antifungal activities of caraway oil. Proc. 19th Int. Symp. Essential oils and other natural substances. Landenberghaus Greifensee, Switzerland, September.
Khafagy S. M.; T.M. Sarg; N.A. Abdel Salam; O. Gabr (1978), Isolation of two flavone glycosides from the fruits of Cuminum cyminum L. grown in Egypt. Pharmazie. May;33 (5):296-7.
Kunzemann J. and K Hermann (1977). Isolation and identification of flavonol-o-glycosides in caraway (Carum carvi L.), fennel (Foeniculum vulgare Mill.), anise (Pimpinella anisum L.) and coriander (Coriandrum sativum L.) and of flavon-c-glycosides in anise. Phenolics of spices (authors transl). Z. Lebensm. Unters Forsch., 164: 194-200.
Losada B.; García-Rebollar P.; Cachaldora P.; C. Álvarez; J. Méndez and J. C. de Blas (2009). A comparison of the prediction of apparent metabolizable energy content of starchy grains and cereal by-products for poultry from its chemical components, in vitro analysis or near-infrared reflectance spectroscopy. Spanish Journal of Agricultural Research 2009 7(4), 813-823. Available online at www.inia.es/sjar ISSN: 1695-971-X.
Maertens L.; R. Moermans and G. De Groote (1988). Prediction of the apparent digestible energy content of commercial pelleted feeds for rabbits. J. App. Rabbit Res., 11, 60-67.
Matsumara T.; T. Ishikawa; and J. Kitazima (2002). Water-soluble constituents of caraway: aromatic compound, glucoside and glucides. Phytochemistry, 61, 2002, 455-459.
McNab, J.M. and J.C. Blair (1988). Modified assay for true and apparent metabolizable energy based on tube feeding. Br. Poult. Sci., 29: 697-707.
Metz, S. H. M. and J. M. van der Meer (1985). Nylon bag and in vitro technique to predict in vivo digestibility of organic matter in feedstuffs pigs. J. Sci. Food Agric., 31:1087-1130.
Mosenthin, R. and W. Sauer (1991). The effect of source of fiber on pancreatic secretions and on amino-acid digestibility in the pig. J. Anim. Physiol. a. Anim. Nutr., 65, 45–52.
Nascimento, G.A.J.; P.B. Rodrigues; R.T.F. Freitas; A.G. Bertechini; R.R. Lima; L.E.A. Pucci (2009). Prediction equations to estimate the energy values of plant origin concentrate feeds for poultry utilizing the meta-analysis. Rev. Bras. Zootec., 38, 1265–1271.
Nakano, Y.; H. Matsunaga; T. Saita; M. Mori; M. Katano and H. Okabe (1998). Antiproliferative Constituents in Umbelliferae Plants II.: Screening for Polyacetylenes in Some Umbelliferae Plants, and Isolation of Panaxynol and Falcarindiol from the Root of Heracleum moellendorffii. Biol Pharm Bull., Volume 21, Issue 3, 257-61.
Noblet. and Y. Jacquelin-Peyraud (2007). Prediction of organic matter and energy in the growing pig from an in vitro method. Anim. Feed Sci. Technol. 134, 211-222.
NRC (1977) Nutrient Requirements of Rabbits. National Research Council, Washington DC.
Nyachoti, C.; C. d. Lange; B. McBride and H. Schulze (1997a). Significance of endogenous gut nitrogen losses in the nutrition of growing pigs: a review. Can. J. Anim. Sci. 77, 149–163.
Nyachoti, C.M.; C.F. de Lange; H. Schulze (1997b). Estimating endogenous amino acid flows at the terminal ileum and true ileal amino acid digestibilities in feedstuffs for growing pigs using the homoarginine method. J. Anim. Sci. 75, 3206–3213.
Parsons, C.M.; L.M. Potter; R.D. Brown (1983). Effects of dietary carbohydrate and of intestinal microflora on excretion of endogenous amino acids by poultry. Poult. Sci. 62, 483–489.
Pascual, J.J.; C. Cervera and J. Fernandez-Carmona (2000). Comparison of different in vitro digestibility methods for nutritive evaluation of rabbit diets. Word Rabbit Sci. 8, 93-97.
Rahman, M.A. and M.A. Hossain (2003). A flavone from the seeds of Carum carvi L. (Umbelliferae). Pakistan Journal of Scientific and Industrial Research. 46 (4): 235.
Prieto, P.; Pineda, M.& M. Aguilar (1999). Spectrophotometric Quantitation of antioxidant capacity throught the formation of phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), pp.337-41. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10222007.
Ramos M. and R. Carabaño (1996). Nutritive evaluation of rabbit diets by an in vitro method. In Proc.: 6th World Rabbit Congress, 9-12 July, Toulouse. France. Vol.1: 277-282.
Ramos M. and R. Carabaño (1994). Predicción de la digestibilidad de la energía de los piensos para conejos a partir de su digestibilidad in vitro. Rev. Port. Zootec., 1: 233-240
Ramos M.; R. Carabaño and S. Boisen (1992). An in vitro method for estimating digestibility in rabbits. J. Appl. Rabbit Res., 15: 938- 946.
Rodrigues, P.B.; H.S. Rostagno; L.F.T. Albino; P.C. Gomes;W.A. Barboza and R.T. Santana (2001). Energy values of millet, corn and corn byproducts, determined with broilers and adult cockerels. Rev. Bras. Zootec. 30, 1767–1778.
Schiemann, R.; K. Nehring; L. Hoffmann; W. Jentsch and A. Chudy (1972). Energetische Futterbevertung und Energienormen. VEB Deutscher Landwirtschatsverlag, Berlin, Germany.
Sibbald, L. R.; K. Price and J.P. Barrete (1980). True metabolizable energy values for poultry of commercial diets measured by bioassay and predicted from chemical data. Poult. Sci. 59, 808-811.
SAS (2002). Institute Inc., SYSTEM 2002® Software: Product Support Manual, Version 1, First Edition, Cary, NC: SAS Institute Inc.,
Shires, A.; A. R. Robblee; R.T. Hardin and D.R. Clandinin (1979). Effect of the previous diet, body weight and duration of starvation of the assay birds on the true metabolizable energy value of corn. Poul. Sci., 58: 602-608.
Singleton, V. L.; R. Orthofer; and R.M. Lamueea-Raventos (1999). Analysis of total phenols and other antioxidants by means of folin- Ciocalteu reagent. Methods Enzymol. 299, 152-178.
Stein, H.H.; B. Sève; M.F. Fuller; P.J. Moughan; C.F; C.o.T.t.R.A.B.a. de Lange (2007). Invited review: amino acid bioavailability and digestibility in pig feed ingredients: terminology and application. J. Anim. Sci. 85, 172–180.
Su, H.C.F. (1987). Laboratory study on the long-term repellency of dill seed extract to confused flour beetles. Journal of Entomological Science, 22: 70–72.
Swift, R. W. (1957). The nutritive evaluation of forages. pp.34 pp.
Takayanagi, T.; T. Ishikawa; J. Kitazima (2003). Phytochemistry, 63,479-84.
Taverner, M. R. and D. J. Farrel (1981). Available to pigs of amino acids in cereal grains 3. A composition of ileal availability values with fecal, chemical and enzymatic estimates. Br. J. Nutr., 46:173-180.
Trocino, A.; G. Xiccato; P.I. Queaque; A. Sartori (1999). Effect of feeding plans based on dried beet pulp on performance and meat quality of growing rabbits. In Proc.: XIII ASPA National Congress, Piacenza, Italy, 713-715.
Valdes E.V. and S. Leeson (1992c). Measurement of metabolizable energy in poultry feeds by an in vitro system. Poult. Sci. 71: 1493-1503.
Van Soest, P.J., Robertson, J.B., Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3591
Villamide, M. J.; R. Carabano; L. Maertens; J. Pascual; T. Gidenne; L. Falcao-E-Cunha, and G. Xiccato (2009). Prediction of the nutritional value of European compound feeds for rabbits by chemical components and in vitro analysis. Anim. Feed Sci. Technol., 150 (3): 283-294.
Villamide M. J.; R. Carabaño; L. Maertens; J. Pascual; T. Gidenne; L Falcao- E-Cunha and G. Xiccato (2008). Prediction of nutritional value of European compound feeds for rabbits by chemical components and in vitro analysis. Anim. Feed Sci. Technol. (In Press). doi: 10.1016/j.anifeedsci.2008.09.007.
Villamide, M.J. and M.J. Fraga (1998). Prediction of the digestible crude protein and protein digestibility of feed ingredients for rabbits from chemical analysis. Anim. Feed Sci. Tech., 70, 211-224.
Viegi, L.; A. Pieroni; P.M. Guarrera; R. Vangelisti )2003). A review of plants used in folk veterinary medicine in Italy as basis for a databank. J. Ethnopharmacol., 89: 221- 244.
Wichtl, M. (1994). Herbal Drugs and Phytopharmaceuticals. Boca Raton, CRC Press, FL, USA, pp. 128–129.
Williams, P.C. and D.C. Sobering (1996). How Do We Do It: A Brief Summary of the Methods We Use in Developing near Infrared Calibration. In: Davis, A.M.C. and Williams, P., Eds., Near Infrared Spectroscopy: The Future Waves, NIR Publications, Chichester, 185-188.
Zhao, F., Zhang, H.F., Hou, S.S., Zhang, Z.Y. (2008). Predicting metabolizable energy of normal corn from its chemical composition in adult pekin ducks. Poult. Sci. 87, 1603–1608.
Zuelsdorff, N.T. and W.E. Burkholder (1978), Toxicity and repellency of Umbelliferae plant compounds to the granary weevil, Sitophilus granaries. Proc. North Central Branch of the Entomological Society of America. Fifty-seventh Annual Conference of the North Central States Entomologists.33: 28.